Thermochemical solar hydrogen generation.
نویسنده
چکیده
Solar direct, indirect and hybrid thermochemical processes are presented for the generation of hydrogen and compared to alternate solar hydrogen processes. A hybrid solar thermal/electrochemical process combines efficient photovoltaics and concentrated excess sub-bandgap heat into highly efficient elevated temperature solar electrolysis of water and generation of H2 fuel utilizing the thermodynamic temperature induced decrease of E(H2O) with increasing temperature. Theory and experiment is presented for this process using semiconductor bandgap restrictions and combining photodriven charge transfer, with excess sub-bandgap insolation to lower the water potential, and their combination into highly efficient solar generation of H2 is attainable. Fundamental water thermodynamics and solar photosensitizer constraints determine solar energy to hydrogen fuel conversion efficiencies in the 50% range over a wide range of insolation, temperature, pressure and photosensitizer bandgap conditions.
منابع مشابه
Review of Recent advanced in solar thermo-chemical reactors for hydrogen production from water
In this paper a review of solar thermo-chemical reactors for hydrogen production from water is presented. Keywords— Thermochemical, Water, Solar, Hydrogen, Reactor
متن کاملDiscovery of Novel Materials for Solar Thermochemical Fuels
Introduction The use of hydrogen as a clean and sustainable fuel depends on an efficient and inexpensive method of producing the gas. Currently, most hydrogen is produced from steam reformation with hydrocarbons, where water splitting (hydrolysis) is performed by reacting steam to carbon-based fuels. To avoid the use of hydrocarbons and greenhouse gas emissions, hydrolysis is also possible thro...
متن کاملThermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production
In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...
متن کاملEfficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.
Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespe...
متن کاملThermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting
Solar-driven thermochemical water splitting using non-stoichiometric oxides has emerged as an attractive technology for solar fuel production. The most widely considered oxide for this purpose is ceria, but the extreme temperatures required to achieve suitable levels of reduction introduce challenges in reactor design and operation, leading to efficiency penalties. Here, we provide a quantitati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 37 شماره
صفحات -
تاریخ انتشار 2005